

Integration of Quantum Simulation with Generative AI for Sustainable Material Innovation in Architectural Design

Lara Kilislioglu

Kültür2000 Koleji Anadolu Lisesi

Abstract—The pursuit of sustainable architectural innovation increasingly demands the convergence of advanced computational tools capable of addressing both material performance and creative design generation. This paper explores the integration of quantum simulation with generative artificial intelligence (AI) for sustainable material innovation in architectural design, proposing a hybrid framework that unites quantum-level material modeling with data-driven design synthesis. Quantum simulation enables precise prediction of molecular and structural properties of emerging materials, while generative AI facilitates rapid exploration of architectural forms and performance-optimized design alternatives. By synthesizing advances in quantum computing, materials science, and generative design algorithms, the study evaluates how this interdisciplinary integration can accelerate environmentally responsive material discovery and enhance architectural sustainability metrics. The findings suggest that hybrid quantum–AI systems hold significant promise for reducing resource consumption, optimizing structural efficiency, and fostering novel material–form relationships that redefine sustainable architectural practice.

Contemporary architectural practice is increasingly shaped by the urgency of environmental sustainability and the accelerating pace of technological innovation [8]. Buildings account for a substantial share of global energy consumption and material use, prompting designers and researchers to seek methods that not only reduce environmental impact but also reimagine the processes through which materials and forms are conceived. Traditional design methodologies, while effective in aesthetic and functional terms, often rely on incremental improvements in material efficiency

rather than transformative reconfigurations of the design–material relationship [7]. As sustainability challenges intensify, the need for computational frameworks capable of addressing both microscopic material behavior and macroscopic architectural form has become increasingly evident.

Recent advances in quantum simulation and generative artificial intelligence present an opportunity to bridge this gap. Quantum simulation, grounded in quantum mechanical modeling of atomic and molecular interactions, offers unprecedented accuracy in predicting the properties of novel materials [9]. Unlike classical simulations, which approximate

Digital Object Identifier 10.6280/295zx1p77

Date of publication 12 02 2026; date of current version 12 02 2026

quantum effects through computationally expensive algorithms, quantum-based approaches directly model the underlying physics governing material performance. This capability is particularly relevant in the development of low-carbon composites, adaptive smart materials, and energy-efficient structural systems—areas where microscopic variations can significantly influence macroscopic behavior [4].

Parallel to developments in quantum simulation, generative AI has transformed the landscape of architectural design by enabling rapid iteration and optimization of complex geometries [5]. Generative design systems employ machine learning and algorithmic rules to produce diverse design alternatives that respond to predefined performance criteria, such as structural stability, daylight optimization, or thermal efficiency [1]. These systems shift the role of the architect from sole creator to curator and evaluator of computationally generated possibilities, expanding the creative horizon while embedding performance analytics directly into the design process.

The integration of quantum simulation with generative AI introduces a multi-scale computational paradigm in which material discovery and architectural form generation inform one another in real time [6]. Rather than treating material selection as a downstream decision, this approach embeds material intelligence into the earliest stages of conceptual design. Quantum simulations can evaluate the environmental and structural properties of candidate materials, while generative AI algorithms adapt architectural geometries to maximize these properties' effectiveness [2]. The result is a feedback loop that aligns microscopic material optimization with macroscopic spatial and environmental performance.

Such integration carries significant implications for sustainable architectural practice. By enabling predictive analysis of embodied energy, lifecycle durability, and adaptive responsiveness, hybrid quantum–AI systems can reduce reliance on trial-and-error prototyping and resource-intensive experimentation [3]. Moreover, the capacity to simulate and generate design alternatives simultaneously fosters innovation that transcends conventional disciplinary boundaries, linking architecture with materials science, computational physics, and data analytics [11]. This interdisciplinary

convergence redefines sustainability not merely as efficiency but as a dynamic design philosophy grounded in scientific precision and creative adaptability.

Despite its promise, the practical realization of this integration faces challenges related to computational infrastructure, algorithmic transparency, and interdisciplinary knowledge gaps. Quantum computing hardware remains in developmental stages, and generative AI systems require robust datasets and ethical oversight to ensure responsible deployment [10]. Addressing these constraints necessitates collaborative research models that unite architects, engineers, physicists, and computer scientists in shared innovation ecosystems.

This paper examines the theoretical foundations and practical potential of integrating quantum simulation with generative AI to advance sustainable material innovation in architectural design. By analyzing emerging computational methodologies and their implications for environmental performance and creative practice, the study positions hybrid quantum–AI systems as catalysts for a new era of architecture—one in which sustainability is not an afterthought but an intrinsic property of the design process itself.

■ REFERENCES

1. Ain, O., Khalil, H. B., El-Maraghy, M., & Marzouk, M. (2025). Generative Design and Multi-Objective Optimization for Enhanced Building Thermal Performance. *Case Studies in Thermal Engineering*, 106621.
2. Chávez-Angel, E., Eriksen, M. B., Castro-Alvarez, A., García, J. H., Botifoll, M., Avalos-Ovando, O., ... & Mugarza, A. (2025). Applied Artificial Intelligence in Materials Science and Material Design. *Advanced Intelligent Systems*, 2400986.
3. Ezzeddine, A. (2025). Investigating the Role of Artificial Intelligence in Enhancing Decision-Making and Structural Health Monitoring Processes in Construction Engineering and Management: A Literature Review (Doctoral dissertation).
4. Huang, Y., Hu, J., Zhang, Y., Yu, Y., Zhang, D., Jing, Q., ... & Yu, W. (2025). Multifunctional bamboo based materials empowered by multiscale hierarchical

structures—a critical review. *Advanced Materials*, e07844.

5. Jindal, M. (2025). Enhancing Generative AI Models Through Quantum Computing for Improved Text and Image Generation. Available at SSRN 5198542.
6. Mortazavi, B. (2025). Recent advances in machine learning-assisted multiscale design of energy materials. *Advanced Energy Materials*, 15(9), 2403876.
7. Muftah, M. G., Abd Ati, B. R., & Abdelati, F. R. (2026). Flexible Interior Design in Residential Architecture: Functional Efficiency, Economic Value and Long-Term Housing Performance. *Humanities & Natural Sciences Journal*, 7(1), 1115-1127.
8. Munonye, W. C., & Ajonye, G. O. (2025). Energy-driven circular design in the built environment: rethinking architecture and infrastructure. *Frontiers in Sustainable Cities*, 7, 1569362.
9. Rowaiye, A. B., Folarin, A. A., Akingbade, T., Okoli, J. C., Rowaiye, O. I., Folorunso, T. R., & Bur, D. (2025). Advancing predictive modeling in computational chemistry through quantum chemistry, molecular mechanics, and machine learning. *Discover Chemistry*, 2(1), 281.
10. Shafik, W. (2025). Quantum Computing and Generative Adversarial Networks (GANs): Ethics, Privacy, and Security. In *Quantum AI and its Applications in Blockchain Technology* (pp. 111-156). IGI Global Scientific Publishing.
11. Tomassi, A., Falegnami, A., & Romano, E. (2025). Unveiling simplicity: A new paradigm for understanding complex adaptive systems and driving technological innovation. *The Innovation*, 6(9).