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Abstract—This research aims to demonstrate that Feynman’s vector model can be effectively used to
simulate a quantum dot thermometer for nanoscale temperature measurement. Combining theoretical
quantum principles with computational modeling, we model quantum dots as precessing vectors on a
Bloch sphere, linking excited-state and ground-state population dynamics to temperature via the
Boltzmann distribution. Photoluminescence intensity gives the primary temperature readout.
Simulations confirm the model’s accuracy at the nanoscale, demonstrating that Feynman’s
geometrical approach simplifies complex quantum problems and provides a promising basis for
future applications such as targeted drug delivery or diagnostics for quantum computing hardware.

A challenging frontier in modern physics is measur-
ing temperature at a nanoscale. As the boundaries of
physics are pushed to an ever-smaller domain, conven-
tional thermometric techniques become insufficient.
This research explores an innovative solution to this
challenge by simulating a quantum dot thermometer
based on Feynman’s vector model for two-level sys-
tems, as presented in his 1957 paper “Geometrical
Representation of the Schrödinger Equation for Solv-
ing Master Problems” [1].

The foundation of this research lies in Feynman’s
important insight that the complex behaviour of two-
level systems can be represented using a simple vector
model. This three-dimensional vector called r, in a
Bloch sphere, maps the quantum state of a two-level
system. The vector points from the center to a location
on the sphere’s surface. The north pole represents a
complete excited state, while the south pole represents
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a complete ground state. All other points in between
correspond to superpositions. This geometric approach
by Feynman transforms an abstract quantum mechan-
ical problem into a classic vector problem. This way,
phenomena like coherence become as tangible as the
precession of a spinning top.

A quantum dot serves as a great example of Feyn-
man’s theory. These semiconductors behave like arti-
ficial atoms, making them a perfect example of a two
level system [3]. When illuminated with light, quantum
dots absorb and emit photons at specific wavelengths
determined by the structure of their energy levels.
Crucially, the relative populations of these energy
states follow the Boltzmann distribution, creating a
connection between the quantum dot’s optical prop-
erties and its thermal environment. This connection
forms the basis for our thermometer.

The implementation of this concept relies on a few
key physical phenomena. First, the vertical compo-
nent of Feynman’s vector, r3, directly indicates the
population of electrons in the excited and ground
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states. Second, the intensity of the light emitted by
the quantum dot provides a measurable proxy for this
population. Third, by combining these observations
with the Boltzmann distribution, we can extract the
environmental temperature with remarkable precision.
This chain of reasoning transforms what might appear
as abstract quantum mechanics into a practical mea-
surement tool.

This research specifically focuses on developing a
simulation framework for such a quantum dot ther-
mometer, with potential applications in monitoring
nanoscale thermal environments. The ability to mea-
sure temperature at this scale could be a great advance-
ment in fields like targeted drug delivery, where precise
thermal monitoring is crucial. The quantum dot ap-
proach to measuring temperature in a nanoscale offers
significant advantages over conventional methods, in-
cluding minimal invasiveness, high spatial resolution,
and the potential for remote readout through optical
techniques.

The theoretical foundation of this work is in-
fluenced by Feynman’s original formulation, which
showed how the time evolution of quantum states
could be described using classical vector precession
equations [2]. This correlation allows us to evade
much of the mathematical complexity typically as-
sociated with quantum mechanics while retaining all
the essential physics. In our simulation, each quantum
dot is represented by its own Feynman vector, with
the ensemble behavior emerging from the statistical
mechanics of these individual systems interacting with
a thermal environment.

This research addresses the critical gap in
nanoscale temperature measurement by leveraging
quantum dots as minimally invasive optical thermome-
ters. While existing techniques struggle with spatial
resolution or biological compatibility, Feynman’s vec-
tor model provides the missing theoretical framework
to get precise temperature data from quantum dot
photoluminescence. The resulting approach combines
fundamental quantum principles with practical appli-
cations, enabling thermal monitoring in environments
where conventional methods fail, particularly within
living systems where temperature regulation is crucial.

Method
A quantum dot is just like an artificial atom. In

this case a two level quantum dot is an example of a
quantum dot that has two distinctive energy levels: a

lower energy level called the ground state and a higher
energy level called the excited state. This makes it an
excellent example of a two level system described by
Feynman. ∆E is the energy gap that separates these
two levels.

To move from an abstract quantum description to
a geometric one, Feynman’s model can be used. He
defined the three dimensional vector r⃗ = (r1, r2, r3)

whose components are constructed from probability
amplitudes (eq (1,2,3)).

r1 = ab∗+ ba∗ (1)

r2 = i (ab∗ − ba∗) (2)

r3 = aa∗ − bb∗ (3)

This vector lives on the surface of a unit sphere
(the Bloch sphere). All of its three components have a
direct physical interpretation. The vertical component
r3 is the population difference. It is defined as the
probability of being in the excited state minus the
probability of being in the ground state (eq.4).

r3 = |a|2 − |b|2 (4)

When r3 = +1, the quantum dot is completely in
the excited state, when r3 = −1, the quantum dot is
completely in the ground state. Additionally, a value of
r3 = 0 indicates an equal superposition of both states.
The horizontal components, r1 and r2, represent the
“coherence” of the system. They describe the phase
relationship between the states and are related to the
system’s electric dipole moment, which dictates its
ability to emit or absorb radiation.

The time-evolution of the vector r under an exter-
nal perturbation is shown by the equation 5:

dr⃗

dt
= ω⃗xr⃗ (5)

In this classical equation, ω is a vector that rep-
resents the external perturbation (e.g., an oscillating
electric field from a laser). This equation allows us
to simulate the quantum dynamics of the dot using
straightforward vector calculus.

Once thermal equilibrium is reached, the external
perturbation is removed and the system only interacts
with its thermal environment. The coherence compo-
nents average to zero for an ensemble of dots, and only
the population difference r3 remains significant. The
average value of r3 for an ensemble of quantum dots
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can be connected to the Boltzmann distribution to find
the temperature.

The Boltzmann distribution states the ratio of the
number of quantum dots in the excited state (Ne) to
the number of quantum dots in the ground state (Ng)

at a temperature T . This is given by [4]:

Ne

Ng
= e

−∆E
kT (6)

In equation 6, ∆E is the energy difference be-
tween the two states, k is the Boltzmann constant, and
T is the temperature in Kelvin.

The probabilities can be expressed in terms of r3.
Recall from before that |a|2 = Ne

Ntotal
and |b|2 =

Ng − Ntotal , and r3 = |a|2 − |b|2. Using the
identity |a|2 + |b|2 = 1, we can solve for the excited
state probability. Substituting these into the Boltzmann
equation gives the crucial link between the measurable
Feynman vector component and temperature (eq.7):

Ne

Ng
=

1 + r3
1− r3

= e
−∆E
kT (7)

The vector r3 is not measured directly. Instead, the
photoluminescence (PL) intensity of the light emitted
by the quantum dot is measured. A weak laser excites
the ensemble of quantum dots, and a spectrometer
measures the intensity IPL of the light they emit upon
returning to the ground state.

This intensity is directly proportional to the num-
ber of quantum dots in the excited state. The maximum
possible intensity, Imax, occurs when all dots are
excited (r3 = 1). Hence, the normalized intensity
gives a direct measure of the excited state population
(eq.8):

IPL

Imax
= |a|2 =

1 + r3
2

(8)

This can be rearranged to solve for r3 from the
intensity measurements:

r3 = 2(
IPL

Imax
)− 1 (9)

The found value of r3 can then be inserted into
the derived Boltzmann relation to calculate the tem-
perature T :

1 + (2( IPL

Imax
)− 1)

1− (2( IPL

Imax
)− 1)

= e
−∆E
kT (10)

The equation 10 forms the core of the quantum
dot thermometer, transforming a measurement of light

intensity into a precise reading of nanoscale tempera-
ture.

Simulation
The simulation of the quantum dot thermometer’s

behavior was performed using a Python script. The
simulation is based on Feynman’s vector model, incor-
porating both coherent precision due to the intrinsic
energy gap and incoherent relaxation due to interac-
tions with a thermal environment.

For the means of the example simulation, the
following parameters were used:

• The intrinsic energy gap of the quantum dot was set
to a frequency of 15 GHz. This value defines the
magnitude of the ω3 component of the Hamiltonian
vector.

• A relaxation rate of 109s−1 was used. This param-
eter represents the coupling between the quantum
dot and its thermal environment; it dictates the
timescale over which the dot forgets its initial state
and settles into thermal equilibrium.

The time evolution of the state vector was com-
puted by numerically integrating the damped preces-
sion equation using the solve ivp function from the
scipy.integrate library [5]. The simulation was run
for a duration sufficient to allow the state vector to
approach its equilibrium value, typically several times
the inverse of the relaxation rate (1/Γ).

Figure 1. The trajectory of the components of the r

vector as time passes next to the equilibrium popula-
tion vector, at T = 0.5 K.

Following the time evolution simulation, a calibra-
tion curve was generated by calculating the equilib-
rium population difference (r3) across a range of tem-
peratures (from 0.01 K to 5.0 K) using the Boltzmann
distribution formula.
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Finally, the process of temperature measurement
was simulated by selecting a hypothetical measured r3
value and using linear interpolation on the generated
calibration curve to infer the corresponding tempera-
ture.

Figure 2. The trajectory of the population vector on
the Bloch sphere as it approaches thermal equilib-
rium.

Discussion
The findings of this simulation provide insight into

how temperature can be measured on a nanoscale
using quantum dots by incorporating the ideas of
Feynman’s vector model for two-level systems. By
treating each quantum dot as a Bloch vector precessing
under external influence, we were able to simulate
an ensemble average value for the r vector at ther-
mal equilibrium. By substituting this value into the
equation derived from the Boltzmann distribution, we
were able to accurately find the temperature value.
This application validates the assumption that the
abstract quantum state of a two-level system can be
geometrically represented for practical measurement.
The key interpretation is that Feynman’s model acts as
a powerful simplifying bridge, translating a complex
quantum mechanical problem into a classical vector
precession problem, just like a spinning top in a
gravitational field.

While the use of quantum dots and the Boltzmann
distribution for temperature sensing is evident in ex-
isting literature, this researcher’s approach differs in
that it utilizes Feynman’s geometrical representation
as a key concept. This approach not only provides a
much better understanding of the system’s dynamics
but also offers a simulation methodology that avoids
the computational heaviness of full wavefunction evo-
lution. The primary use of this work is its potential

as an educational and prototyping tool, providing a
clear pathway from theory to application. The next
step in this study would be to make this quantum dot
thermometer suitable for work inside a human. This
would be of great help for measuring the temperature
of nanobots in cases like remote drug delivery inside
the human body.

Conclusion
In this research, a successful simulation of a quan-

tum dot thermometer has been created. Connecting
this quantum thermometer with Feynman’s geometric
model for two-level systems takes the complex and
abstract nature behind this quantum problem and trans-
forms it into a much more tangible one, making it
easier to understand and visualize. A promising next
step is to demonstrate the quantum dot thermometer’s
application in areas such as biomedical sensing within
the human body and diagnostics for quantum comput-
ing hardware.
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