Quantum-Enhanced Optimization of Smart Contract Execution for Automated Financial Services

Deni Teminyan ENKA Schools

Abstract—Decentralized finance (DeFi) uses smart contracts to automate payments, lending, and asset management, but current blockchains often suffer from slow, expensive, and energy-hungry execution. In this project, I explore a quantum-enhanced optimization framework for smart contract—based financial services. The main idea is to treat gas use, transaction ordering, and resource allocation as optimization problems that can be tackled by hybrid quantum—classical algorithms. Using a conceptual model, I map smart contract execution to cost functions suitable for the Quantum Approximate Optimization Algorithm (QAOA) and the Variational Quantum Eigensolver (VQE). I then compare, at a qualitative level, how these quantum-inspired approaches differ from classical heuristics in terms of expected throughput, latency, and cost. A focused literature review on quantum computing, blockchain scalability, and quantum-safe cryptography provides context for these ideas. The results suggest that quantum-enhanced optimization could reduce gas fees, improve transaction scheduling, and support more efficient consensus under heavy load. The project also discusses the need for post-quantum security so that future quantum computers do not undermine blockchain trust. Overall, the work outlines how quantum computing might contribute to faster, safer, and more sustainable automated financial systems.

Blockchain technology has enabled decentralized and transparent financial systems where smart contracts run automatically on distributed ledgers (Oluwaferanmi, 2025). However, as networks grow, they face serious problems: high gas costs, long confirmation times, and heavy energy use (Thirupathi, Vasundara, Rajan, & Arella, 2025). These issues limit the scalability of DeFi and automated financial services.

Digital Object Identifier 10.62802/hazn6723

Date of publication 10 10 2025; date of current version 16 11 2025

Quantum computing offers a new computational model based on qubits, which can exist in superposition and become entangled (Columbus Chinnappan et al., 2025). Quantum optimization algorithms can, in principle, search large solution spaces more efficiently than many classical methods. This makes them interesting for tasks like transaction ordering, resource scheduling, and consensus support in blockchains (Prabanand & Thanabal, 2025).

In this project, I investigate how a hybrid quantum-classical framework using algorithms such as QAOA and VQE could optimize smart contract execution. The goal is to explore ways to reduce latency and gas fees while keeping the system secure and reliable (Alaka, Abiodun, Jinadu, Igba, & Ezeh, 2025; Cao, Yu, Xu, Zhu, & Yang, 2025). I also look at quantum cryptography and post-quantum security to ensure that future quantum computers do not break blockchain-based financial systems (Wang, Yu, & Zhou, 2025).

Methods

Conceptual Hybrid Quantum-Classical Model

First, I define a conceptual model of smart contract execution in a DeFi system. Key elements include:

- A set of pending transactions and contract calls,
- Gas usage and time cost for each operation,
- · Constraints from consensus rules and block size.

These elements are encoded as a cost function that penalizes high gas fees, long latency, and inefficient resource use.

Mapping to Quantum Optimization (QAOA / VQE)

The cost function is then mapped to a form suitable for QAOA and VQE:

- In QAOA, bit strings represent different transaction orders or resource allocations, and the algorithm searches for low-cost configurations.
- In In VQE, a parameterized quantum circuit is trained (with a classical optimizer) to minimize the expected value of the cost Hamiltonian.

The framework is hybrid: a quantum processor evaluates the cost landscape, while a classical optimizer updates parameters.

Comparison with Classical Techniques

The quantum-enhanced approach is compared, conceptually, with:

- Classical optimization and metaheuristics (e.g., greedy methods, simulated annealing),
- Existing gas-optimization and scheduling strategies in blockchain research (Prabanand & Thanabal, 2025; Cao et al., 2025).

The comparison focuses on expected improvements in throughput, latency, and cost, based on trends reported in the literature, not on real hardware benchmarks.

Literature Review on Quantum Security and Blockchain

A targeted literature review covers:

- Data integrity and automation in DeFi (Alaka et al., 2025),
- Quantum computing for blockchain and AI-driven financial systems (Arumugam, Kumari, Tiwari, & Tyagi, 2025),
- Quantum-safe cryptography and Industry 4.0 blockchain transformation (Wang et al., 2025).

These sources are used to frame the security and implementation aspects of the proposed framework.

Results

Expected Optimization Benefits

Based on the models and literature:

- Gas-cost reduction: Quantum-enhanced optimization could help find cheaper transaction schedules and contract deployment strategies by exploring more combinations in fewer steps.
- Lower latency and higher throughput: Better ordering and resource allocation should shorten block confirmation times and increase the number of processed transactions per unit time.
- Improved resource scheduling: Hybrid schemes can dynamically adapt to changing network conditions, similar to quantum-enhanced offloading strategies studied in edge computing (Cao et al., 2025).

These results are qualitative, but they show why quantum optimization is promising for DeFi.

Security and Post-Quantum Considerations

The study also highlights that as quantum computers become more powerful, they may break some current cryptographic schemes. Therefore:

- Blockchains will need post-quantum signatures and possibly quantum key distribution (QKD) to stay secure.
- Quantum optimization must be combined with quantum-safe security designs so that performance gains do not come at the cost of trust.

This connects performance optimization with long-term resilience of financial systems (Arumugam et al., 2025; Wang et al., 2025).

Discussion

Implications for DeFi and Automated Services

If implemented in the future, quantum-enhanced optimization could:

- Make DeFi platforms more scalable and userfriendly,
- Support complex automated products (like dynamic lending pools or real-time risk management),
- Reduce operational overhead for institutions that rely on smart contracts.

This aligns with broader goals of automation, transparency, and sustainability in digital economies.

Practical Challenges and Limitations

However, there are important challenges:

- Current quantum hardware is noisy and small-scale, limiting what can be run in practice.
- Mapping real smart contract workloads into efficient quantum representations is non-trivial.
- Integration with existing blockchain clients, nodes, and developer tools will require significant engineering effort.

These limitations mean that the framework is forward-looking rather than ready for immediate deployment.

Conclusion

This project presents a conceptual quantum-enhanced optimization framework for smart contract execution in decentralized financial systems. By encoding gas fees, transaction ordering, and resource allocation as cost functions for hybrid quantum-classical algorithms like QAOA and VQE, it outlines how quantum computing could improve throughput, latency, and cost in DeFi.

At the same time, the work stresses the importance of post-quantum security and careful system design, so that financial automation remains trustworthy in a future with powerful quantum computers. Overall, the study shows how quantum computing and blockchain technology might converge to enable faster, safer, and more sustainable automated financial services.

REFERENCES

 Alaka, E. & Abiodun, K. & Jinadu, S. O. & Igba, E. & Ezeh, V. N. (2025). Data integrity in decentralized financial systems: A model for auditable, automated

- reconciliation using blockchain and Al. International Journal of Management and Commerce Innovations. 13(1). 136–158.
- Arumugam, S. K. & Kumari, S. & Tiwari, S. & Tyagi, A. K. (2025). Quantum Computing for Next-Generation Artificial Intelligence—Based Blockchain. In Quantum Computing (pp. 251–267). Auerbach Publications.
- Cao, J. & Yu, Z. & Xu, X. & Zhu, B. & Yang, J. (2025).
 Quantum-Enhanced Edge Offloading and Resource Scheduling with Privacy-Preserving Machine Learning.
 Computers, Materials & Continua. 83(3).
- Columbus Chinnappan, C. & Thanaraj Krishnan, P. & Elamaran, E. & Arul, R. & Sunil Kumar, T. (2025).
 Quantum Computing: Foundations, Architecture and Applications. Engineering Reports. 7(8). e70337.
- Oluwaferanmi, A. (2025). Smart Contracts and Automated Payment Systems in US Supply Chain Finance: Disrupting Traditional Banking Channels and Redefining Commercial Credit and Liquidity Management.
- Prabanand, S. C. & Thanabal, M. S. (2025). Advanced financial security system using smart contract in private Ethereum consortium blockchain with hybrid optimization strategy. Scientific Reports. 15(1). 6764.
- Thirupathi, L. & Vasundara, B. & Rajan, P. & Arella, T. (2025). Optimization Tools and Techniques for Al and ML: Exploring Future Directions and Emerging Trends. In Optimization Tools and Techniques for Enhanced Computational Efficiency (pp. 125–150).
- Wang, Z. & Yu, L. & Zhou, L. (2025). Navigating the blockchain-driven transformation in Industry 4.0: opportunities and challenges for economic and management innovations. Journal of the Knowledge Economy. 16(1). 3507–3549.

10 2025