Quantum Computing–Enhanced Service Ecosystems for

Industrial Manufacturing Simulation and Workflow Optimization

Erim EnginAmerican Collegiate Institute, Izmir

Abstract—The advent of quantum computing is redefining the computational landscape of industrial manufacturing, introducing new paradigms for simulation, optimization, and adaptive decision-making. This study investigates the integration of quantum computing-enhanced service ecosystems within industrial manufacturing frameworks, focusing on how quantum algorithms can accelerate workflow optimization, supply chain coordination, and process simulation in large-scale production environments. Traditional simulation and optimization techniques often struggle with the combinatorial complexity of modern manufacturing systems, leading to inefficiencies in resource allocation, scheduling, and predictive maintenance. The proposed framework leverages hybrid quantum-classical computation to simulate high-dimensional manufacturing workflows through quantum annealing, Quantum Approximate Optimization Algorithm (QAOA), and quantum-inspired reinforcement learning. These techniques enable more efficient exploration of multi-objective optimization spaces, facilitating near-real-time decision support and improved throughput under uncertain production conditions. The model also emphasizes the development of service-oriented architectures that integrate quantum computation with industrial Internet of Things (IIoT) infrastructures, digital twins, and cloud-based manufacturing services. Results from conceptual modeling and early simulation experiments suggest that quantum-enhanced service ecosystems outperform conventional digital twins and heuristic optimization methods in adaptability, precision, and energy efficiency. This convergence of quantum computing and industrial systems marks a shift toward next-generation intelligent manufacturing, capable of autonomous learning, dynamic reconfiguration, and sustainable production optimization.

Industrial manufacturing is undergoing a profound transformation driven by Industry 4.0 and the emerging vision of Industry 5.0, where cyberphysical systems, automation, and data-driven intelligence are converging to create flexible, responsive, and sustainable production environments [11]. Central to this evolution is the ability to

Digital Object Identifier 10.62802/qz0bbp72

Date of publication 13 11 2025; date of current version 13 11 2025

manage complex workflows, coordinate distributed resources, and optimize production networks across multi-stage industrial ecosystems. Traditional computational methods—though effective in localized or linear problem settings—often struggle with the combinatorial and stochastic nature of real-world manufacturing systems [4]. As the volume of data and the number of process variables grow exponentially, quantum computing emerges as a powerful enabler for managing such complexity with